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The conventional approach to shape from stereo is via feature extraction and corre-
spondences. This results in estimates of the camera parameters and a typically sparse
estimate of the surface.

Given a set of calibrated images, a dense surface reconstruction is possible by min-
imizing the error between the observed image and the image rendered from the esti-
mated surface with respect to the surface model parameters.

Given an uncalibrated image and an estimated surface, the camera parameters can
be estimated by minimizing the error between the observed and rendered images as a
function of the camera parameters.

We use a very small set of matched features to provide camera parameter estimates
for the initial dense surface estimate. We then re-estimate the camera parameters as
described above, and then re-estimate the surface. This process is iterated. Whilst it
can not be proven to converge, we have found that around three iterations results in
excellent surface and camera parameter estimates.

1This work was supported in part by the National Aeronautics and Space Administration (NASA) under
Cooperative Agreement MCC 2-1006 with the Universities Space Research Association (USRA).
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1 Abstract

The conventional approach to shape from stereo is via feature extraction and corre-
spondences. This results in estimates of the camera parameters and a typically sparse
estimate of the surface.

Given a set of calibrated images, a dense surface reconstruction is possible by min-
imizing the error between the observed image and the image rendered from the esti-
mated surface with respect to the surface model parameters.

Given an uncalibrated image and an estimated surface, the camera parameters can
be estimated by minimizing the error between the observed and rendered images as a
function of the camera parameters.

We use a very small set of matched features to provide camera parameter estimates
for the initial dense surface estimate. We then re-estimate the camera parameters as
described above, and then re-estimate the surface. This process is iterated. Whilst it
can not be proven to converge, we have found that around three iterations results in
excellent surface and camera parameter estimates.

2 Introduction

The goal of surface recovery is to take a set of images and estimate the positions and
orientations of the cameras that produced the images, and a representation of the sur-
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face that was imaged. This is an example of an inverse problem. The forward (or
direct) problem is: given a surface and the position and orientation of a camera, what
is the expected image? This is the area of computer graphics known as rendering [1].
The inverse problem is: given an set of images, estimate the position and orientation of
the cameras, and the shape and reflectance properties of the surface. That is, estimate
a generative model [2].

We apply Bayesian inference to this problem, as it has been shown to be the natural
approach to inverse problems of this kind [3]. We postulate models for the surface
and for the imaging process, and Bayes theorem tell us how to estimate the parameters
of these models from the image data. We use a simple triangulated mesh model for
the geometry of the surface, storing heights, z, at each vertex of the mesh. We also
associate a parameterized reflectance model with the surface. For simplicity here we
consider the Lambertian model, and store a single albedo value, � at each vertex. (For
multispectral data we store an array of albedo values, one for each spectral band.)

We use the standard pinhole camera model for the image formation process [4],
and assume that the internal camera parameters are known. (See, for example, [5]
for a simple method of internal camera calibration.) The theoretical development of
our approach can be generalized to other imaging geometries and surface reflectance
models.

Thus we wish to infer the heights, z, the albedos, � and the camera parameters, �,
from the images. Bayes theorem gives

p�z� ���jfIg� � p�fIgjz� ����p�z� ���� (1)

We assume that the priors are independent, so that

p�z� ���� � p�z�p���p���

and use a simple smoothness prior for z and � based on penalising curvature, and a
uniform prior on �. The likelihood is assumed to result from Gaussian errors between
the image �I�z� ���� synthesized from the surface model and the observed images fIg,
giving

p�fIgjz� ���� � exp

�
�X

f�p

�
If�p � �If�p�z� ���f ��

��
�����e�

�
A (2)

where the sum is over all pixels, p in all images, If . The surface parameters, z, �, are
clearly shared between all images. Each image has its own set of camera parameters,
�f .

The function �I�z� ���� is the process of rendering the surface described by fz� �g
with the camera location and orientation given by �. This is clearly nonlinear, and
makes optimization of the posterior distribution in equation 1 difficult. To make progress
in finding the maximum a-posteriori (MAP) estimate, we linearize the image formation
process about the current estimate,

�I�z� ���� � �I�u�� � Dx (3)
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where u � fz� ���g, x � u� u� and

D �

�
� �I

�z
�
� �I

��
�
� �I

��

�

If we use a Gaussian smoothness prior with covariance matrix � as described above
then the linearization converts finding the MAP estimate to the minimization of a
quadratic form

L �
	

�
xTAx� bx (4)

A � ��� �
	

��e
DDT (5)

b �
I � �I�z� ����

��e
D (6)

which is equivalent to the solution of the system of equations

Ax � b (7)

Consider the structure of this system of equations. The matrix of derivatives D is
of dimensions

(no. of pixels)� (no. of heights + no. of albedos +

no. of camera parameters) (8)

or, for the results presented later

��
�� �
��� ��	� �	 � �	� �	 � ��

The portion of this matrix that is due to the differentials with respect to z and � is
very sparse, as typically each mesh vertex is used by a few of the triangles that make
up the surface, and these triangles project into only a few pixels. The portion due to
the differentials with respect to the camera parameters is, however, dense, as changing
any one of the camera parameters typically affects the intensities of all the pixels in
the image. As a result of this, DDT and hence A are very large (around �	�� �
	�� � and dense (around � � 	�� elements). It is clearly impractical to perform
joint estimation in this manner. Instead we estimate alternately the camera parameters
and the surface parameters, that is

given �� estimate fz� �g

given fz� �g� estimate � (9)

In this way we compute either with a very large, but very sparse matrix when estimating
z and �, or with a very small, dense matrix when estimating �. The estimates are made
by using conjugate gradient to solve equation 7 in an iterative manner. At convergence,
we update the current estimate, u� � u� � x, re-render to compute new values of
�I�z� ���� and D, and repeat the solution of equation 7 until a stable solution is reached.
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Figure 1: Geometry of the triangular facet, illumination direction and viewing direc-
tion. �zs is the vector to the illumination source; �zv is the viewing direction.

This requires an initialization for either � or fz� �g. We use initial values for �
from point matching a very small number of points, or from nominal camera position
and orientations, if they are known (eg from rover or aircraft dead-reckoning). In the
experiments described later, point matching was used.

3 Forming the Image

As we have seen, to solve the inverse problem we must be able to simulate the forward
problem, to compute �I�z� ����, (“rendering”). Current rendering technology uses “im-
age space” computation, where the fundamental unit is the pixel. Each pixel is assumed
to be illuminated by light from one, and only one, triangular facet. This assumption
makes for very fast rendering, but results in aliasing artefacts. It also makes the render-
ing process non-differentiable.

To enable a renderer to also compute derivatives it is necessary that all computa-
tions are done in “object space”. This implies that the light from a surface triangle, as
it is projected into a pixel, contributes to the brightness of that pixel with a weight pro-
portional to the fraction of the area of the triangle which projects into that pixel. The
total brightness of the pixel is thus the sum of the contributions from all the triangles
who’s projections overlaps with the pixel

�Ip �
X
�

fp
�
��� (10)

where fp
�

is the fraction of the flux from triangle � that falls into pixel p, given by

fp
�
�

�Apolygon
�A�

� (11)
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where �A denotes projected area, and�� is the total flux from the triangle, and �apolygon
is the area on the image plane of the intesection of the projection of the triangle and the
pixel. In the case of Lambertian reflection, this is given by

�� � �E��s� cos�v �cos ������ (12)

E��s� � A �Is cos�s � Ia� �

�� � S�d��

Here � is an average albedo of the triangular facet. Orientation angles �s and �v are
defined in figure 1. E��s� is the total radiation flux incident on the triangular facet
with area A. This flux is modeled as a sum of two terms. The first term corresponds
to direct radiation with intensity Is from the light source at infinity (commonly the
sun). The second term corresponds to ambient light with intensity Ia. The parameter
� in equation (12) is the angle between the camera axis and the viewing direction (the
vector from the surface to the camera); 	 is the lens falloff factor. �� in (12) is the
solid angle subtended by the camera which is determined by the area of the lens S
and the distance d from the centroid of the triangular facet to the camera. If shadows
are present on the surface the situation is somewhat more complex. In this paper we
assume that there are no shadows or occlusions present in the images.

The Area A of the triangle and the orientation angles in equation 12 can be calcu-
lated in terms of the vertices of the triangle, Pi, see figure 1, as follows:

�n � �zs � cos�s� �n � �zv � cos�v �

�n �
vi��i� � vi��i�

�A
� vi�j � Pj �Pi (13)

Here �n is a unit normal to the triangular facet and vi�j are vectors of the edges of the
triangle.

4 Computing the Derivative Matrices

To compute the MAP estimates of fz� �g and � we must compute both the image
�I�z� ���� and the derivative matrices Dz, D� and D�.

The derivatives with respect to the albedo values can easily be derived from equa-
tions 10 and 12. Note that because  
 � 
 	, in practice, we work with transformed
albedo values, where �� log����	� ���.

Denoting by u the component of z or � that we are currently considering, the pixel
intensity derivatives with respect to u have two components

� �Ip
�u

�
X
�

�
fp
�

���
�u

���
�fp

�

�u

	
(14)

The first component is due to changes in angle – as the height of a vertex changes, the
normal to the facet changes, and so the derivative has a component due to the change
in angle between the normal and the sun direction; as the camera changes position, the
angle between the normal and the ray to the camera changes.
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Consider first ������i. We neglect the derivatives with respect to the fall-off
angle, �, as their contribution will be small, and so it is clear from equation 12 that the
derivative with respect to any of the camera orientation angles is zero.

The derivative with respect to the camera position parameters is given by

���
��i

�
�

��i

cos�v (15)

�
�n
v
��zi � �zv��zv��zi��

where v is the vector from the triangle to the camera, v � jvj, �i are the three compo-
nents of the camera position, �zi are unit vectors in the three coordinate directions and
�zv � v�v (see figure 1).

Consider now the derivative with respect to the height of one of the mesh vertices,
zi. The flux derivative, ����zi, can be computed directly from the coordinates of the
triangle vertices and the camera position using equations 12 and 13. For the surface tri-
angle with vertices �Pi� �Pi� �Pi�� the flux derivative with respect to the z component
of the vertex Pi� equals

��

�zi�
�

	

�
��Pi� �Pi��� �z � g

S

d�
� (16)

where
g � Is��zv cos�s ��zs cos�v � �n cos�s cos�v� � Ia�zv

and �z is a unit normal in the vertical direction.
For a triangle that projects entirely within a pixel, this completes the derivative

computation – the second term in equation 14 is the derivative of the fractional area of
the triangle that projects into the pixel.

4.1 Fractional Area Derivatives

When the height of a vertex, z, changes, its projection on the image plane, �P, also
moves, by ��P. This gives rise to a change � �A� in the area of the projection of the
triangle, and also the change �Apolygon in the polygon area. It follows from equation
11 that

�fp
�

�zi�
�

	
�A�

�
� �Apolygon

� �Pi�

� fp
�

� �A�
� �Pi�

	
� �Pi�

�zi�
� (17)

where the point displacement derivative ��Pi���zi� will be given later.
When the camera parameters change, the positions of the projections of the mesh

vertices into the image plane will also move. The derivative of the fractional area is
given by

�fp
�

��i

�
	
�A�

X
j�i��i��i�

�
� �Apolygon

� �Pj

� fp
�

� �A�
� �Pj

	
� �Pj

��i

� (18)

The point displacement derivatives will be detailed below.
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Figure 2: The intersection of the projection of a triangular surface element �i�� i�� i��
onto the pixel plane with the pixel boundaries. Bold lines corresponds to the edges
of the polygon resulting from the intersection. Dashed lines correspond to the new
positions of the triangle edges when point Pi� is displaced by �P

Thus, the task of computing the derivative of the area fraction given in equation
18 is reduced to the computation of � �A��� �Pj and � �Apolygon��

�Pj. Note that the
intersection of a triangle and a pixel for a rectangular pixel boundary can, in general,
be a polygon with 3 to 7 edges with various possible forms. However the algorithm for
computing the polygon area derivatives that we have developed is general, and does
not depend on a particular polygon configuration. The main idea of the algorithm can
be described as follows. Consider, as an example, the polygon shown in figure 2 which
is a part of the projected surface triangle with indices i�� i�� i�. We are interested in
the derivative of the polygon area with respect to the point �Pi� that connects two edges
of the projected triangle, �Pi� �Pi�� and �Pi� �Pi��. These triangular edges contain
segments �I� J� and �K� L� that are sides of the corresponding polygon. It can be seen
from figure 2 that when the point �Pi� is displaced by � �Pi� the change in the polygon
area is given by the sum of two terms

� �Apolygon � �AI�J � �AK�L

These terms are equal to the areas spanned by the two corresponding segments taken
with appropriate signs. Therefore the polygon area derivative with respect to the tri-
angle vertex �Pi� is represented as a sum of the two “segment area” derivatives for the
two segments adjacent to a given vertex. Using straightforward geometrical arguments
one can calculate the areas �AI�J and �AK�L to first order in the displacement ��Pi� .
Then the polygon area derivative can be written in the following form:

� �Apolygon

� �Pi�

�
	

�
�� �W� �� �



 	
�	 

�
(19)
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The unit antisymmetric matrix �� performs a -��� rotation in the image plane and vector
W equals

W �
�
�	�R�

I ��R�

J

 �
�Pi� � �Pi�

�
�
�
�	�R�

K��R�

L

 �
�Pi� � �Pi�

�
� (20)

The ratio factors R determine the positions of the intersection points I�J�K�L on the
edges of the triangle (see figure 2).

RI �

��I� �Pi�

�����Pi� � �Pi�

�� � RJ �

��J� �Pi�

�����Pi� � �Pi�

�� � (21)

RK �

��K� �Pi�

�����Pi� � �Pi�

�� � RL �

��L� �Pi�

�����Pi� � �Pi�

�� �
Equations 19, 21, 20 are the central result of the area fraction derivative computation.
It is given for the general case of triangle-pixel intersection where two edges of triangle
adjacent to the vertex Pi� each have two intersection points. Note that pairs of inter-
section points, I�J and K�L are defined in a unique way if one considers the triangle
edges in counterclockwise order. Therefore equations 19-21 can be applied to all possi-
ble intersection cases. For example, assume that all three triangle vertices are projected
inside the pixel. In this case intersection point K has merged with Pi� , points L and I
have merged with Pi� and J with Pi� . Then in equation 21 we should put

RK � RL � RI � RJ � � (22)

In this case polygon area derivative in equation 21 is reduced to the derivative of the
full area of the projected triangle

�A�
�

� �Pi�

�
	

�
�� � �Pi� �Pi�� � (23)

The general rule for computing the ratio factors RI�J�K�L can be formulated as
follows:

� If point Pi� lies inside of the pixel one should set in equation 21 ratio factors
RL �  and RI � .

� If point Pi� lies inside of the pixel then one sets RK � .

� If Pi� lies inside then RJ � .

This describes all possible intersection cases and provides a full description for the area
fraction derivative (18).

We now consider the point displacement derivatives.
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4.2 Derivatives of the position of the projection of a point on the
image plane.

The pinhole camera model [4] gives

�ul �
�AR�P� t��l
�R�P� t���

(24)

where R is the rotation matrix from world to camera coordinates, t is the translation of
between camera and world coordinates and A is the matrix of camera internal param-
eters [5], �u is the projection of point P onto the image plane and l � f	� �g indexes
the x and y components. In the numerical experiments presented here we assume that
the internal camera parameters are known, and further that the image plane axes are
perpendicular, and that the principle point is at the origin. This reduces A to a diagonal
matrix with elements �k�� k�� 	�, where k� � �f�lx, k� � �f�ly. Where f is the focal
length of the lens and lx and ly are the dimensions of the pixels in the retinal plane.

The rotation matrix R can be written in terms of the Rodrigues vector [4] � �
���� ��� ��� which defines the axis of rotation, and � � j�j is the magnitude of the
rotation. (Clearly � can be written in terms of the camera position, the look-at point
and the view-up vector.)

R � I�H
sin �

�
�H�

�	� cos ��

��
(25)

where

H �

�
�  ��� ��

��  ���
��� �� 

�
A � (26)

Let H � H�� and ri � ri�� then

�R
��i

� �Hi

sin �

�
� �HHi �HiH�

�	� cos ��

�

�H

�
cos � �

sin �

�

�
ri

�H�

�
sin � � �

	� cos �

�

�
ri (27)

where Hi � �H���i. Then

��ul
��i

�

�
�
h
A�R

��i
�P� t�

i
l

�R�P� t���
�

�AR�P� t��l
h
�R
��i

�P� t�
i
�

��R�P� t�����

�
A (28)

The derivatives with respect to the position parameters are

��ul
�tj

�
�AR�P� t��l�R���j
��R�P� t�����

�
�AR�l�j

�R�P� t���
(29)
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Figure 3: Four synthetic images of Duckwater, Nevada

Note that whilst in equation 28 we have given the differentials with respect to the
Rodriguez vector components, when performing the minimization in equation 4 we do
so in terms of the look-at point, as this is in the natural length scale of the problem and
leads to better convergence. Converting the derivatives is an application of the chain
rule and is not detailed here.

The derivative with respect to the heights is the same as the derivative with respect
to the z-component of the camera position, but with the sign reversed, that is

��ul
�zi

� �
�AR�P� t����R����
��R�P� t�����

�
�AR�l��

�R�P� t���

5 Results

Figure 3 shows four synthetic images of a region of Duckwater, Nevada. They were
generated by rendering a synthetic surface. The surface was constructed by using the
USGS Digital Elevation Model for the heights, and using the scaled intensities of a
LANDSAT-TM image as surrogate albedos. The size of the surface is �	 � �	
points. The distance between grid points was taken to be one unit, and the heights
scaled appropriately. Figure 4 shows a perspective view of the surface. The albedos
have been raised to the power �� to stretch the contrast and the vertical scale has been
expanded. Table 1 gives the camera parameters that were used to generate the images.

An initial estimate of the camera parameters was made by using point matching
[7]. We have found that the Harris corner detector [6] typically used to select features
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Figure 4: True surface

does not find many reliable features in he types of natural scenery we are concerned
with here. Table 2 gives the parameters estimated by matching five points across the
four images.

Using these estimated camera parameters, a dense surface estimate can be made.
For space reasons we do not show the surface estimate, instead, in figure 6 we show
the error surface. The main points to note are that

1. inaccuracies in the camera parameter estimation have resulted in an erroneous
slope in the surface estimate.

2. the overall height of the surface is shifted upwards; but note that the overall shift
is a small percentage (less than �
�) of the distance from the surface to the
cameras. The overall height is only weakly determined.

3. the albedo estimates are in general quite good (the RMSE for the albedo estimate
is 0.022).

Using the gradient-based, whole image, approach to camera calibration to a surface,
that we have described above, we then registered the images to the surface estimate.
Using the new camera parameters, we re-estimated the surface. This was iterated three
times. Table 3 gives the final camera parameters, and figure 5 shows the final sur-
face estimate. Figure 7 is the error surface and figure 8 is a section through the error
surfaces. We note the following:

1. the main improvement in the camera parameter estimation is in the orientation
angle, defined by the view-up vector

2. the erroneous slope has been corrected

3. the error in the global height remains
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4. the estimate shows most inaccuracies close to rapid changes in albedo, for ex-
ample the white (salt lake) area to the top right of the surface, where albedo and
slope effects have not been completely decoupled.

6 Conclusions

In this paper we have described a system that takes a set of images and uses them to
infer both the camera parameters and a dense surface model. It does this by iterative
linearization of a model of the image formation process, and minimization of the error
between the whole of the observed and rendered images with respect to the camera and
surface parameters. We have demonstrated the convergence of this system on a set of
images rendered from a model of a region of Nevada.

The system we have described has many advantages. The scale of the surface model
that is estimated is decoupled from the pixel scale of the images via the rendering
process. This means that the surface model scale can be chosen by the user, either on
the basis of the use to which the surface model will be put, or a scale may be chosen
which is best justified by the image data. This is important – if we have many low
resolution images of a region, the scale of the surface model may be super-resolved
(where a triangular surface element projects onto an area smaller than a pixel on the
image plane). If the coverage of the surface by the images is non-uniform, we can
specify a spatially-varying mesh for the surface, denser in regions where we have more
images.

The information about the surface captured by the system is not just the MAP
surface estimate, but also the accuracy of the estimate, represented by the inverse co-
variance matrix (A in equation 5). Knowing the inverse covariance matrix allows for
recursive updates – as new images become available the information they contain can
be integrated into the model. In Bayesian terminology, the posterior distribution from
one set of images (defined by the MAP estimate and the inverse covariance matrix)
becomes the prior for estimation with new images.

Finally, we are not restricted to only image data. If data from other sensing modal-
ities is available (for example, laser altimetry data) then we can add a term to the
likelihood (equation 2) for this data, take derivatives of a model of how this new sensor
makes measurements with respect to the surface model parameters, and our surface
model estimate will seamlessly integrate the multi-modal information.
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Table 1: Camera parameters used to generate the images in figure 3.

camera ��	� 	
� 	��
image 1 look at �	
� 	
� �

view up �� 	� �

camera ��	� 	
� 	��
image 2 look at �	
�� 	
� �

view up ���	� 	����	�

camera �	
	��		� 	��
image 3 look at �	
	� 	��� �

view up ������ ����� �	���

camera �	
�� ���� 	��
image 4 look at �	
	� 	
	� �

view up ���	� �������		��

Table 2: Camera parameters estimated using point matching. The first image was taken
as a known reference.
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Table 3: Final camera parameters estimated using gradient based image error estima-
tion on the estimated surface (3rd iteration).
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Figure 5: Inferred surface
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Figure 6: Error surface for the surface estimate using camera parameters from point
matching
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Figure 7: Error surface for the surface estimate using iteratively refined camera param-
eters
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Figure 8: Section through the error surfaces. Dotted line - error of pointmatching
estimate; solid line - error of the final estimate
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